Nuprl Lemma : loc-on-path-nil 11,40

es:ES, i:Id. loc-on-path(es;i;[])  False 
latex


Definitionsloc-on-path(es;i;L), False, x:AB(x), x:AB(x), s = t, t  T, strong-subtype(A;B), P  Q, Void, ES, Id, P  Q, x:A  B(x), P & Q, P  Q, (x  l), Atom$n, x:A.B(x), Top, constant_function(f;A;B), p  q, qpositive(r), p q, q_le(r;s), <+>, , a  b, r  s, tag(k), lnk(k), tl(l), if a<b then c else d, i <z j, i j, nth_tl(n;as), hd(l), l[i], rec-case(a) of [] => s | x::y => z.t(x;y;z), ||as||, isrcv(k), -n, r * s, r - s, n+m, r + s, s+r, let x = a in b(x), when-after(e;info;pred?;init;Trans;val;time), state_when(e), outr(x), act(k), val-axiom(E;V;M;info;pred?;init;Trans;Choose;Send;val;time), Msg(M), type List, <ab>, inl x , rcv(l,tg), inr x , locl(a), kind(e), islocal(k), kindcase(ka.f(a); l,t.g(l;t) ), Knd, n * m, isint(z;a;b), qeq(r;s), a  b  T , , A  B, x,y:A//B(x;y), , EState(T), source(l), A  B, , SWellFounded(R(x;y)), t.2, let x,y = A in B(x;y), t.1, destination(l), loc(e), "$token", outl(x), pred(e), isl(x), b, first(e), A, pred!(e;e'), n - m, if a=b  then c  else d, (i = j), if b then t else f fi , Y, rel_exp(T;R;n), x f y, a < b, {x:AB(x)} , , x.A(x), R^+, e < e', link(e), Ax, , sender(e), case b of inl(x) => s(x) | inr(y) => t(y), ecase1(e;info;i.f(i);l,e'.g(l;e')), rcv?(e), EOrderAxioms(Epred?info), IdLnk, , Unit, left + right, , EqDecider(T), P  Q, Dec(P), b, x:AB(x), b | a, a ~ b, a  b, a <p b, a < b, A c B, f(a), xLP(x), (xL.P(x)), r < s, q-rel(r;x), Outcome, l_disjoint(T;l1;l2), (e <loc e'), e loc e' , (e < e'), e c e', e<e'.P(e), ee'.P(e), e<e'P(e), ee'.P(e), e[e1,e2).P(e), e[e1,e2).P(e), e[e1,e2].P(e), e[e1,e2].P(e), e(e1,e2].P(e), {T}
Lemmasnil member, decidable false, event system wf, Id wf, loc-on-path wf, false wf

origin